资源类型

期刊论文 456

年份

2023 51

2022 49

2021 44

2020 29

2019 39

2018 21

2017 21

2016 20

2015 16

2014 40

2013 14

2012 9

2011 11

2010 18

2009 15

2008 19

2007 14

2006 6

2005 1

2004 1

展开 ︾

关键词

复合材料 5

膜分离 5

反渗透 3

渗透汽化 3

PP 2

力学性能 2

双极板 2

反渗透膜 2

吸附 2

复合镀层 2

气体分离 2

纳滤 2

组合梁 2

耐氯性 2

聚偏氟乙烯 2

聚酰胺 2

膜材料 2

超滤 2

重金属废水 2

展开 ︾

检索范围:

排序: 展示方式:

Preliminary study of groundwater denitrification using a composite membrane bioreactor

Lihui ZHANG, Guomin CAO, Yulei FEI, Hong DING, Mei SHENG, Yongdi LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 604-609 doi: 10.1007/s11783-011-0274-x

摘要: A composite membrane bioreactor (CMBR) integrating the immobilized cell technique and the membrane separation technology was developed for groundwater denitrification. The CMBR had two well mixed compartments with one filled with the nitrate- containing influent and the other with a dilute ethanol solution; the compartments were separated by the composite membrane consisting of a microporous membrane facing the influent and an immobilized cell membrane facing the ethanol solution. Nitrate and ethanol molecules diffused from the respective compartments into the immobilized cell membrane where nitrate was reduced to gaseous nitrogen by the denitrifying bacteria present there with ethanol as the carbon source. The microporous membrane was attached to one side of the immobilized cell membrane for retention of the disaggregated bacteria. Relative to the single dose of external ethanol, the two-dose supplementation produced better treatment results as evidenced by the lower concentrations of and ethanol (as measured by total organic carbon) of the effluent. The batch treatment in CMBR removed most of the nitrate in the influent and attained a stable denitrification rate of 0.1 g·m ·h for most of the 96-h cycles during the 30-cycle study. The effluent was essentially free of ethanol and nitrite nitrogen.

关键词: groundwater     nitrate     denitrification     composite membrane bioreactor (CMBR)     immobilized cell membrane    

Preparation and performance of novel thermal stable composite nanofiltration membrane

WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 402-406 doi: 10.1007/s11705-008-0063-7

摘要: The novel thermal stable composite nanofiltration membranes were prepared through the interfacial polymerization of piperazine and trimesoyl chloride on the poly (phthalazinone ether) ultrafiltration substrate. The effects of polymerization and testing conditions on membrane performance were studied. The surface morphologies of the substrate and the composite membranes were observed by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The separation properties of membranes for dyes and salts were tested. The composite membranes show good thermal stability. The rejection for NaSO was kept over 96%, while the flux reached 400 L·m·h when it was tested at 1.0 MPa and 80°C. When tested at 1.0 MPa and 60°C, the rejection of the composite membrane for dyes was kept at high level, and the flux reached 180–210 Lm·h, while the rejection for NaCl was lower than 20%.

关键词: electron microscopy     rejection     composite membrane     interfacial polymerization     thermal stability    

Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 709-719 doi: 10.1007/s11705-021-2078-2

摘要: Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35€±€2 kg·m–2·h–1 with a sodium chloride rejection of 99.9%€±€0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m–2·h–1 with a NaOH rejection over 99.98% was obtained.

关键词: pervaporation     alkaline solution concentration     polyethylene membrane     acid resistance     chlorine tolerance    

Synthesis of novel magneto-hybrid polyoxometalate composite membrane with simultaneous photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1450-1459 doi: 10.1007/s11705-023-2310-3

摘要: Membrane technology is ideal for removing aqueous humic acid, but humic acid deposits cause membrane fouling, a significant challenge that limits its application. Herein, this work proposed an alternative approach to the controllably magnetically induced magneto-hybrid polyoxometalate (magneto-HPOM) nanocomposite migration toward the polyethersulfone (PES) membrane surface under a magnetic field to enhance the self-cleaning and antifouling functionalities of the membrane. Before incorporating magneto-HPOM nanocomposite into the PES casting solution, functionalized magnetite nanoparticles (F-MNP) were first coated with HPOM photocatalyst to fabricate a magneto-HPOM-PES membrane. It was shown that the apparent impacts of this novel magneto-HPOM-PES membrane on the hydrophilic behavior and photocatalytic properties of the magneto-HPOM nanocomposite improve the hydrophilicity, separation performance, antifouling and self-cleaning properties of the membrane compared with neat PES membrane. Furthermore, after exposure to ultraviolet light, the magneto-HPOM-PES membrane can be recovered after three cycles with a flux recovery ratio of 107.95%, 100.06%, and 95.56%, which is attributed to the temporal super hydrophilicity effect. Meanwhile, the magneto-HPOM-PES membrane could efficiently maintain 100% humic acid rejection for the first and second cycles and 99.81% for the third cycle. This study revealed a novel approach to fabricating membranes with high antifouling and self-cleaning properties for water treatment.

关键词: magneto-hybrid polyoxometalate nanocomposite     composite membrane     antifouling     self-cleaning     magnetic and photocatalytic responsiveness    

Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis

Ying Yan, Peng Huang, Huiping Zhang

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 772-783 doi: 10.1007/s11705-019-1827-y

摘要: Carbon molecular sieve membrane (CMSM)/paper-like stainless steel fibers (PSSF) has been manufactured by pyrolyzing poly (furfuryl alcohol) (PFA) coated on the metal fibers. PFA was synthesized using oxalic acid dihydrate as a catalyst and coated on microfibers by dip coating method. For the purpose of investigating the effects of final carbonization temperature, the composites were carbonized between 400°C and 800°C under flowing nitrogen. The morphology and microstructure were examined by X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, N adsorption and desorption, Raman spectra and X-ray photoelectron spectra. The consequences of characterization showed that the CMSM containing mesopores of 3.9 nm were manufactured. The specific surface area of the CMSM/PSSF fabricated in different pyrolysis temperature varies from 26.5 to 169.1 m ∙g and pore volume varies from 0.06 to 0.23 cm ∙g . When pyrolysis temperature exceeds 600°C, the specific surface, pore diameter and pore volume decreased as carbonization temperature increased. Besides, the degree of graphitization in carbon matrix increased with rising pyrolysis temperature. Toluene adsorption experiments on different structured fixed bed that was padded by CMSM/PSSF and granular activated carbon (GAC) were conducted. For the sake of comparison, adsorption test was also performed on fixed bed packed with GAC. The experimental results indicated that the rate constant ′ was dramatically increased as the proportion of CMCM/PSSF composites increased on the basis of Yoon-Nelson model, which suggested that structured fixed bed padded with CMSM/PSSF composite offered higher adsorption rate and mass transfer efficiency.

关键词: carbon molecular sieve membrane     stainless steel fibers     pyrolysis     structured fixed bed     toluene    

Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on theperformance of thin-film composite nanofiltration membrane

Meibo He, Zhuang Liu, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 400-414 doi: 10.1007/s11705-018-1757-0

摘要: Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the interfacial polymerization of piperazine (PIP) and 1,3,5-benzenetricarbonyl trichloride on polysulfone (PSf) support membranes blended with K -responsive poly( -isopropylacryamide-co-acryloylamidobenzo-15-crown-5) (P(NIPAM-co-AAB C )). Membranes were characterized by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, contact angle, and filtration tests. The results showed that: (1) Under K -free conditions, the blended P(NIPAM-co-AAB C )/PSf supports had porous and hydrophilic surfaces, thereby producing NF membranes with smooth surfaces and low MgSO rejections; (2) With K in the PIP solution, the surface roughness and water permeability of the resultant NF membrane were increased due to the K -induced transition of low-content P(NIPAM-co-AAB C ) from hydrophilic to hydrophobic; (3) After a curing treatment at 95 °C, the improved NF membrane achieved an even higher pure water permeability of 10.97 L·m ·h ·bar under 200 psi. Overall, this study provides a novel method to improve the performance of NF membranes and helps understand the influence of supports on TFC membranes.

关键词: nanofiltration     interfacial polymerization     support membrane     potassium ion-responsive     thin-film composite    

Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light

Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 892-901 doi: 10.1007/s11705-020-2011-0

摘要: Photocatalytic membranes have received increasing attention due to their excellent separation and photodegradation of organic contaminants in wastewater. Herein, we bound Ag-AgBr nanoparticles onto a synthesized polyacrylonitrile-ethanolamine (PAN-ETA) membrane with the aid of a chitosan (CS)-TiO layer via vacuum filtration and partial reduction. The introduction of the CS-TiO layer improved surface hydrophilicity and provided attachment sites for the Ag-AgBr nanoparticles. The PAN-ETA/CS-TiO /Ag-AgBr photocatalytic membranes showed a relatively high water permeation flux (~ 47 L·m ·h ·bar ) and dyes rejection (methyl orange: 88.22%; congo red: 95%; methyl blue: 97.41%; rose bengal: 99.98%). Additionally, the composite membranes exhibited potential long-term stability for dye/salt separation (dye rejection: ~97%; salt rejection: ~6.5%). Moreover, the methylene blue and rhodamine B solutions (20 mL, 10 mg·L ) were degraded approximately 90.75% and 96.81% in batch mode via the synthesized photocatalytic membranes under visible light irradiation for 30 min. This study provides a feasible method for the combination of polymeric membranes and inorganic catalytic materials.

关键词: Ag-AgBr     dye rejection     photodegradation     visible light    

反渗透和纳滤膜的研制与应用

张奇峰,李胜海,王屯钰,李磊,张所波

《中国工程科学》 2014年 第16卷 第12期   页码 17-23

摘要:

本文介绍了基于联苯多元酰氯单体的聚酰胺反渗透和纳滤复合膜材料体系。通过系统研究聚合物的官能团含量、取代基位置等因素对反渗透复合膜性能的影响,揭示了有价值的实验规律: a.通过调节酰氯单体的官能度,可以实现对反渗透复合膜的性质,包括表面形貌、表面化学组成、表面荷电性质的调控,从而实现对复合膜分离性能及抗污染性能的调控;b.可以利用联苯多元酰氯单体制备得到纳滤复合膜,所得纳滤膜的孔径和荷电性质可以通过调节制膜工艺实现调控。这些结果,为进一步优化制膜工艺,提供可供产业化生产的新型反渗透和纳滤复合膜制备技术奠定了基础。

关键词: 反渗透膜     纳滤膜     联苯多元酰氯    

Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane

Linlin You, Yandong Guo, Yanjing He, Feng Huo, Shaojuan Zeng, Chunshan Li, Xiangping Zhang, Xiaochun Zhang

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 141-151 doi: 10.1007/s11705-020-2009-7

摘要: Ionic liquid (IL)/polyimide (PI) composite membranes demonstrate promise for use in CO separation applications. However, few studies have focused on the microscopic mechanism of CO in these composite systems, which is important information for designing new membranes. In this work, a series of systems of CO in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide composited with 4,4-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based PI, 6FDA-2,3,5,6-tetramethyl-1,4-phenylene-diamine, at different IL concentrations were investigated by all-atom molecular dynamics simulation. The formation of IL regions in PI was found, and the IL regions gradually became continuous channels with increasing IL concentrations. The analysis of the radial distribution functions and hydrogen bond numbers demonstrated that PI had a stronger interaction with cations than anions. However, the hydrogen bonds among PI chains were destroyed by the addition of IL, which was favorable for transporting CO . Furthermore, the self-diffusion coefficient and free energy barrier suggested that the diffusion coefficient of CO decreased with increasing IL concentrations up to 35 wt-% due to the decrease of the fractional free volume of the composite membrane. However, the CO self-diffusion coefficients increased when the IL contents were higher than 35 wt-%, which was attributed to the formation of continuous IL domain that benefitted the transportation of CO .

关键词: carbon dioxide     ionic liquid     6FDA-TeMPD     composite membrane     molecular dynamics simulation    

高效选择性PVDF中空纤维膜设计及除铯研究 Article

丁士元, 张利兰, 李阳, 候立安

《工程(英文)》 2019年 第5卷 第5期   页码 865-871 doi: 10.1016/j.eng.2019.07.021

摘要:

本研究通过一种简单有效的接枝方法成功制备了亚铁氰化铜/二氧化硅/聚偏氟乙烯(CuFC/SiO2/PVDF)中空纤维膜。PVDF中空纤维膜通过SiO2中间层将CuFC纳米颗粒固定以去除Cs。分别通过扫描电子显微镜和X射线能谱仪分析了改性膜表面形貌和化学组成。3层CuFC和0.5% SiO2负载制备的CuFC/SiO2/PVDF膜具有非常高的膜渗透通量(49 L·m-2·h-1·bar-1)和Cs截留率(99.82%),且pH(4~10)的变化对Cs的去除率影响较小。改性膜可以通过NH4NO3进行多次有效再生。在1 mmol·L–1的共存竞争离子(K+和Na+)影响下,改性膜仍保持较高的除Cs效率(8 h分别为76.25%和88.67%),展现出对Cs的选择去除性。特别地, CuFC/SiO2/PVDF膜在处理含低浓度Cs(100 μg·L–1)的天然地表水和模拟水体时表现出非常优异的去除率(>90%)。因此,CuFC/SiO2/PVDF膜具有处理受Cs污染的放射性废水的工程应用潜力。

关键词: 铯去除     膜改性     亚铁氰化铜     聚偏氟乙烯    

Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water

Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1286-1

摘要: Abstract • A high-performance electrode was prepared with super-aligned carbon nanotubes. • SACNT/AC electrode achieved a ~100% increase in desalination capacity and rate. • SACNT/AC electrode achieved a ~26% increase in charge efficiency. • CUF process with SACNT/AC achieved an up to 2.43-fold fouling reduction. • SACNT/AC imparts overall improved water purification efficiency. The practical application of the capacitive deionization (CDI) enhanced ultrafiltration (CUF) technology is hampered due to low performance of electrodes. The current study demonstrated a novel super-aligned carbon nanotube (SACNT)/activated carbon (AC) composite electrode, which was prepared through coating AC on a cross-stacked SACNT film. The desalination capability and water purification performance of the prepared electrode were systematically investigated at different applied voltages (0.8–1.2 V) with a CDI system and a CUF system, respectively. In the CDI tests, as compared with the control AC electrode, the SACNT/AC electrode achieved an approximately 100% increase in both maximum salt adsorption capacity and average salt adsorption rate under all the applied voltage conditions, demonstrating a superior desalination capability. Meanwhile, a conspicuous increase by an average of ~26% in charge efficiency was also achieved at all the voltages. In the CUF tests, as compared with the control run at 0 V, the treatment runs at 0.8, 1.0, and 1.2 V achieved a 2.40-fold, 2.08-fold, and 2.43-fold reduction in membrane fouling (calculated according to the final transmembrane pressure (TMP) data at the end of every purification stage), respectively. The average TMP increasing rates at 0.8, 1.0, and 1.2 V were also roughly two times smaller than that at 0 V, indicating a dramatical reduction of membrane fouling. The SACNT/AC electrode also maintained its superior desalination capability in the CUF process, resulting in an overall improved water purification efficiency.

关键词: Carbon nanotube     Super aligned     Conductive membrane     Capacitive deionization     Ultrafiltration     Desalination    

Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications

Wei Wang, Yanying Wei, Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 793-819 doi: 10.1007/s11705-020-2016-8

摘要: Two-dimensional (2D) materials have emerged as a class of promising materials to prepare high-performance 2D membranes for various separation applications. The precise control of the interlayer nanochannel/sub-nanochannel between nanosheets or the pore size of nanosheets within 2D membranes enables 2D membranes to achieve promising molecular sieving performance. To date, many 2D membranes with high permeability and high selectivity have been reported, exhibiting high separation performance. This review presents the development, progress, and recent breakthrough of different types of 2D membranes, including membranes based on porous and non-porous 2D nanosheets for various separations. Separation mechanism of 2D membranes and their fabrication methods are also reviewed. Last but not the least, challenges and future directions of 2D membranes for wide utilization are discussed in brief.

关键词: membrane separation     2D membranes     2D materials     nanosheet    

Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1671-7

摘要:

● Dolomite-doped biochar/bentonite was synthesized for phosphate removal.

关键词: Biochar-bentonite composite     Dolomite doping     Phosphate adsorption     Polymeric matrix membrane     Adsorption-filtration dual functions     Low-concentration phosphate    

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 1-14 doi: 10.1007/s11709-019-0514-x

摘要:

In view of China’s development trend of green building and building industrialization, based on the emerging requirements of the structural engineering community, the development and proposition of novel resource-saving high-performance steel-concrete composite structural systems with adequate safety and durability has become a kernel development trend in structural engineering. This paper provides a state of the art review of China’s cutting-edge research and technologies in steel-concrete composite structures in recent years, including the building engineering, the bridge engineering and the special engineering. This paper summarizes the technical principles and applications of the long-span bi-directional composite structures, the long-span composite transfer structures, the comprehensive crack control technique based on uplift-restricted and slip-permitted (URSP) connectors, the steel plate concrete composite (SPCC) strengthen technique, and the innovative composite joints. By improving and revising traditional structure types, the comprehensive superiority of steel-concrete composite structures is well elicited. The research results also indicate that the high-performance steel-concrete composite structures have a promising popularizing prospect in the future.

关键词: high-performance composite structure     bi-directional composite     composite transfer     uplift-restricted and slip-permitted connectors     steel plate concrete composite strengthen    

陶瓷中空纤维内表面制备聚二甲基硅氧烷复合膜——从单通道到多通道 Article

董孜业, 朱海鹏, 杭颖婷, 刘公平, 金万勤

《工程(英文)》 2020年 第6卷 第1期   页码 89-99 doi: 10.1016/j.eng.2019.10.012

摘要:

在中空纤维载体内表面沉积分离层制备中空纤维复合内膜为其工业应用提供更多机遇,然而目前仍面临诸多挑战。本文提出通过涂覆/错流法在单通道或多通道陶瓷中空纤维内表面制备聚二甲基硅氧烷(PDMS)复合膜。通过控制聚合物浓度和涂覆时间,优化了PDMS/陶瓷中空纤维复合内膜的纳米结构和分离性能。分别用场发射电镜(FE-SEM)、傅里叶红外光谱(ATR-FTIR)、纳米压痕/划痕技术和渗透气化回收生物丁醇测试表征了膜的形貌、表面化学性质、界面结合力和分离性能。系统研究了陶瓷中空纤维内表面PDMS膜层的形成机理。优化的PDMS/陶瓷中空纤维复合内膜具有薄且无缺陷的分离层,用于60 ℃下1 wt%正丁醇-水混合物分离,通量高达约1800 g·m–2·h–1,分离因子为35~38。本文提出涂覆/错流的简便方法用于制备中空纤维内表面涂层,显现出巨大潜力,在膜材料、吸附剂、复合材料等领域具有广泛应用前景。

关键词: 陶瓷中空纤维     内膜     渗透汽化     聚二甲基硅氧烷     丁醇    

标题 作者 时间 类型 操作

Preliminary study of groundwater denitrification using a composite membrane bioreactor

Lihui ZHANG, Guomin CAO, Yulei FEI, Hong DING, Mei SHENG, Yongdi LIU

期刊论文

Preparation and performance of novel thermal stable composite nanofiltration membrane

WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao

期刊论文

Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation

期刊论文

Synthesis of novel magneto-hybrid polyoxometalate composite membrane with simultaneous photocatalytic

期刊论文

Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis

Ying Yan, Peng Huang, Huiping Zhang

期刊论文

Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on theperformance of thin-film composite nanofiltration membrane

Meibo He, Zhuang Liu, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden

期刊论文

Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light

Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu

期刊论文

反渗透和纳滤膜的研制与应用

张奇峰,李胜海,王屯钰,李磊,张所波

期刊论文

Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane

Linlin You, Yandong Guo, Yanjing He, Feng Huo, Shaojuan Zeng, Chunshan Li, Xiangping Zhang, Xiaochun Zhang

期刊论文

高效选择性PVDF中空纤维膜设计及除铯研究

丁士元, 张利兰, 李阳, 候立安

期刊论文

Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water

Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang

期刊论文

Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications

Wei Wang, Yanying Wei, Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang

期刊论文

Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters

期刊论文

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

期刊论文

陶瓷中空纤维内表面制备聚二甲基硅氧烷复合膜——从单通道到多通道

董孜业, 朱海鹏, 杭颖婷, 刘公平, 金万勤

期刊论文